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Abstract—Automatic literacy assessment technology can help 

children acquire reading skills by providing teachers valuable 

feedback in a repeatable, consistent manner.  Recent research 

efforts have concentrated on detecting mispronunciations during 

word-reading and sentence-reading tasks.  These token-level 

assessments are important since they highlight specific errors 

made by the child.  However, there is also a need for more high-

level automatic assessments that capture the overall performance 

of the children.  These high-level assessments can be viewed as an 

interpretive extension to token-level assessments, and may be 

more perceptually relevant to teachers and helpful in tracking 

performance over time.  In this work, we model and predict the 

overall reading ability of young children reading a list of English 

words aloud.  The data consist of audio recordings, collected in 

real kindergarten to second grade classrooms from children from 

native English- and Spanish-speaking households.   

This research is broken into two main parts.  The first part is a 

user study, in which 11 human evaluators rated the children on 

their overall reading ability based on the audio recordings.  The 

evaluators were volunteers from a diverse background, seven of 

whom were native speakers of American English and four that 

were fluent speakers of English as a secondary language.  While 

none of the evaluators were trained reading experts or licensed 

teachers, a subset of them were linguists and researchers with 

experience in automatic literacy assessment.  As part of this 

work, we analyzed the effect of the evaluator’s background on 

inter-evaluator agreement.  

In the second part, we ran machine learning experiments to 

predict evaluators’ scores using features automatically extracted 

from the audio.  The features were human-inspired and 

correlated with cues human evaluators stated they used: 

pronunciation correctness, speaking rate, and fluency.  We 

investigated various automated methods to verify the correctness 

of the word pronunciations and to detect disfluencies in the 

children’s speech using held-out annotated data.  Using linear 

regression techniques, we automatically predicted individual 

evaluators’ high-level scores with a mean Pearson correlation 

coefficient of 0.828, and we predicted average evaluator’s scores 

with correlation 0.946.  Both these human-machine agreement 

statistics exceeded the mean inter-evaluator agreement statistics.   
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I. INTRODUCTION 

ITERACY assessment is an important element in early 

education [1], helping bridge the gap between children’s 

learning and teachers’ goals [2].  These assessments can 

occur at different granularities (segmental or suprasegmental) 

depending on the intended application and reading task.  For 

example, preliterate children are assessed on their knowledge 

of the letter-to-sound rules of a particular language, while 
more advanced students are assessed on their ability to 

fluently read phrases and sentences aloud  [3].  Appropriate 

reading tasks must be designed to elicit speech that facilitates 

the intended assessment.  One common theme among most 

reading assessment tasks is the use of multiple test items 

(“tokens”) for each subject.  This is done for a number of 

practical reasons.  First, it ensures the subjects are provided 

enough tokens to cover many, or even possibly all, associated 

linguistic or category variations.  Second, it allows evaluators 

to adjust to the speaking style of the subjects, so accent and 

idiosyncratic behaviors are taken into account.  Third, it 

provides evaluators with statistically adequate evidence to 
make global (“high-level”) assessments on the subjects’ 

overall performance.  In this paper, we are specifically 

interested in this final aspect: to automatically model and 

predict evaluators’ high-level assessments for a particular 

reading task widely administered to young children.   

 There is a need for technology to be incorporated in the 

classroom to collaboratively assist in reading instruction [4].  

We propose in this paper to use automatic computer-based 

literacy assessments to help teachers, allowing them to better 

concentrate on lesson-planning and individualized teaching.  

Automatic computer-based literacy assessments can have 
several advantages over manual human-based assessments.  

Manual assessments are very time consuming, requiring one-

on-one time.  Doing continual assessments may not be feasible 

in a common scenario like a classroom, where there are 

several students and only one teacher, and where assessment 

time competes with instruction.  Automatic assessment 

systems could significantly reduce the time burden of teachers.  

Manual assessments are also not standardized across 

evaluators, dependent on factors such as the evaluator’s 

experience, personal biases, and human limitations (e.g., 

fatigue).  Automatic computer-based assessments can provide 

a more consistent assessment framework, relying on objective 
features extracted from the available audio-video signals.  A 
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standardized computer-based automatic literacy assessment 

system could make more meaningful comparisons across 

children and over time.  Finally, automatic literacy assessment 

systems can be portable and be scaled up to serve large 

populations of children.   

 There are several benefits for providing high-level overall 
assessments rather than (or in addition to) the more typical 

token-level assessments.  First, having knowledge of the 

overall performance may be particularly useful when tracking 

performance over time.  Second, high-level assessments 

provide a thumbnail view of a child’s performance, which 

may be useful for teachers by aiding in instruction planning or 

designing further performance drill-down.  Third, high-level 

assessments may model evaluators’ perception better than 

token-level assessments.  Whereas in token-level assessments, 

decisions are made on the goodness of that particular token, 

high-level assessments are directly modeling evaluators’ 

interpretation on overall performance, which may be a multi-
dimensional and/or non-linear mapping from token-level 

performance. Therefore, high-level assessments can be viewed 

as the interpretive extension to token-level assessments.   

Automatic high-level literacy assessment is a difficult 

problem because it involves the modeling and prediction of 

subjective human judgments.  In order to accurately make 

high-level assessments, the multiple cues human evaluators 

might use have to be automatically extracted from the 

available measured observations.  In addition, they have to be 

combined in a way that accurately models the high-level 

assessment.  People might base their assessments on different 
cues when forming a grading criteria, and even in cases where 

evaluators use the same cues, they might differ on the relative 

importance of each.  From a signal processing viewpoint, this 

requires the robust extraction of perceptually relevant features, 

followed by an appropriate machine learning algorithm that 

learns the interpretation of these cues, based on individual 

evaluators or a bank of evaluators.   

There has been significant work on reading assessment, 

especially in second language learning and children’s reading 

applications.  Most of the related work has involved adults or 

children already reading phrases and sentences.  We argue that 

literacy assessments at an earlier age is critical, since it has 
been shown that early literacy proficiency is a good predictor 

for reading fluency and comprehension proficiency in later 

grades [3]-[5].  Importantly, studies have shown a significant 

decrease in the percentage of poor readers when interventions 

take place before the second grade [6].  Automatic literacy 

assessments targeting younger children could help catch 

problems earlier, and an effective intervention could give 

children a better chance to grow into competent readers.  In 

addition, much of the related work has concentrated on 

detecting segmental and suprasegmental errors in production 

for various reading tasks (e.g., [7]-[14]), but overall 
performance is rarely estimated.  Some previous work has 

concentrated on providing overall scores (e.g., pronunciation 

quality [15], fluency [16], reading level [17]), but automatic 

high-level reading assessments remain relatively under-

researched.  It should be noted that the idea of modeling 

global holistic human judgments is not unique to literacy 

assessment.  For example, the computer vision community has 

viewed this problem in the context of reconciling human 

evaluations and automatic scene classification [18]-[19].   

Literacy assessments can fall under a number of 

overlapping reading-related skills, such as decoding words, 

fluently reading sentences aloud, reading comprehension, and 

writing.  In this research, we assess children in kindergarten to 

second grade on their overall ability to fluently decode a list of 
English words aloud.  This reading task is appropriate for this 

age group and resulted in speech that had a high level of 

variability in responses, including a range of disfluencies (e.g., 

hesitating, sounding out the words, elongating phones).  While 

teachers can make use of both acoustic information and visual 

information (e.g., mouth movement, eye gaze) when assessing 

children’s reading skills, we only have access to one audio 

signal, recorded from a close-talking microphone.  Both the 

human evaluators and the automatic methods used this single 

audio channel, which may have resulted in a lower baseline 

performance for the human evaluators, as compared to a more 

traditional scoring setup.  Future research will incorporate 
both acoustic and visual information to provide a more 

realistic scenario to human evaluators and to enable a 

multimodal approach to automatic literacy assessment.  The 

combined use of audio and video information has been shown 

to bring increased accuracy and robustness in the context of 

automatic speech recognition [20]-[21].  

In this research, human evaluators listened to the children’s 

speech and rated each on their overall reading ability on a 

Likert scale of 1 to 7.  These human scores were the dependent 

variable for all our experiments and represented the high-level 

literacy assessment targets.  There is always some level of 
subjectivity involved in assessment tasks, as is evident in 

variations across evaluators.  Computers can help automate 

these types of judgments if they are able to make predictions 

that are in line with human evaluators.  In this research, and in 

related research also involving human assessments (e.g., [12] 

and [22]-[24]), performance of the automatic system is 

measured by computing human-computer agreement.  One 

could then view a computer as being competent if it can agree 

with human evaluators as much as humans agree amongst 

themselves.  Ideally, computers would be able to adapt their 

grading styles to each evaluator or to a bank of evaluators.   

In our previous paper [25], we showed that disfluencies 
have a perceptual impact on evaluators rating the overall 

performance of the children.  We used a grammar-based 

automatic speech recognizer to detect disfluencies in the 

children’s speech.  In addition, we showed that by combining 

pronunciation correctness, disfluency features, and temporal 

speaking rate features, we could predict the average 

evaluator’s scores with agreement that was comparable to 

human inter-evaluator agreement [26]-[27].  In this paper, we 

improve upon our pronunciation verification and disfluency 

detection methods and train a system using various feature 

selection procedures and linear regression techniques.  We 
also extend our analysis to predict individual evaluator’s 

scores.  The final optimized system was able to learn both an 

individual evaluator’s high-level scores and the average 

evaluators’ scores with the same level of agreement with 

which evaluators agree among themselves.   

This paper is organized as follows.  Section II discusses the 

TBALL Project and the TBALL Corpus, on which this paper’s 

work is based upon.  Section III describes and analyzes the 
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human evaluations we administered to attain perceptual 

judgments.  Section IV discusses the features we extracted that 

correlated with the cues evaluators used when making high-

level judgments.  Section V discusses the machine learning 

methods we studied to predict evaluators’ high-level 

assessments.  Section VI provides our results and discussion, 
and we conclude in Section VII.   

II. TBALL PROJECT AND CORPUS 

The Technology-Based Assessment of Language and 

Literacy (TBALL) Project was formed to create automatic 

literacy assessment technology for young children in early 

education from multi-lingual backgrounds [28]-[29].  The 

TBALL Project’s main goal was not to create real-time 

automated literacy tutors (see [7]-[8] and [30]-[37]) but rather 
to provide a technological assessment framework that teachers 

could use to inform their teaching and track children’s 

progress.  The reading tasks were designed for and 

administered to children in actual kindergarten to second 

grade classrooms in Northern and Southern California.  About 

half of the children were native speakers of American English, 

with the other half non-native or bilingual speakers of English 

from a Mexican-Spanish linguistic background.   

The young age of the children and diverse population make 

this project and resulting corpus unique from other existing 

corpora [38]-[40].  We administered different reading tasks, 
compared to other automatic literacy assessment projects, to 

be more geared to preliterate children.  These ranged from 

testing the production of English letter-names, the sounds 

corresponding to each letter (“letter-sounds”), syllable-

blending tasks, to reading a list of isolated words.  The 

resulting speech from a single close-talking headset 

microphone makes up the TBALL Corpus [41].  Since the 

reading tests were administered in actual classrooms, the 

background noises included typical classroom sounds, such as 

other children’s voices and the teacher’s voice.  The children’s 

demographics (gender, grade, native language) were obtained 

by forms filled out by assenting parents and were included as 
part of the corpus when available.   

 For this work, we analyzed speech from an adaptation of the 

Beginning Phonic Skills Test (BPST) [42], an isolated word-

reading task consisting of 55 pre-determined words.  This 

word list was chosen since it evaluates children’s phonemic 

awareness and decoding skills [43].  The difficulty of the 

words is steadily increased throughout the reading task, 

starting with monosyllabic words (e.g., map, left, cute), and 

ending with multisyllabic words (e.g., silent, respectfully).  

When administering the test, each word was displayed on a 

computer monitor one at a time, and the children had up to 
five seconds to say the word aloud before the next word was 

shown.  The children had the option to advance to the next 

word before this five-second limit by pressing a button.  

During the data collection process, a trained research assistant 

listened beside the child, and if the child mispronounced three 

words in a row, the assistant manually stopped the session.  

This was done to prevent the children from getting too 

frustrated and is not the termination criterion from the BPST 

as generally administered.  As a result, only 11.0% of the 

children read the full list of 55 words from our sample (M = 

21.6 words, SD = 11.2 words).  The transition times between 

words were automatically recorded, and these times were used 

to split each child’s audio into single-word utterances.   

 Our test set was comprised of the speech from 42 children, 

each of whom completed at least the first ten words of the 

isolated word-reading task.  These children were selected from 
a total of 100 children’s data to ensure a wide variety of 

performance levels and reading styles and to be near balanced 

with respect to gender and native language.  We chose 42 

children to limit the total amount of speech to approximately 

30 minutes to prevent evaluator fatigue when manually 

assessing the speech (described in Sec. III).  To ensure the 

words read by each child were of comparable difficulty, we 

only selected words that appeared in the top 25 of the word 

list.  In total, the test set had 770 single-word utterances, an 

average of 18.3 words per child (SD = 5.07 words).  The final 

demographics of the 42 children were: gender (female=21, 

male=21), grade (kindergarten=5, first=22, second=15), and 
native language (English=20, Spanish=18, bilingual=4).   

We also constructed a held-out feature development set 

with 220 children’s speech from the isolated word-reading 

task; this set is described in detail in Sec. IV-B.  Lastly, we 

used 19 hours of held-out speech from word-reading and 

picture-naming tasks to train 33 monophone acoustic models, 

a word-level filler “garbage” acoustic model on all speech 

segments, and a background/silence acoustic model on 

background segments of the recordings.   All acoustic models 

were three-state Hidden Markov Models (HMMs) with 16 

Gaussian mixtures per state.  For features, we extracted a 39-
dimensional vector, consisting of the first 12 Mel-Frequency 

Cepstral Coefficients (MFCCs), log energy, and their delta 

and delta-delta coefficients, every 10 ms using a 25 ms 

Hamming window.  We applied cepstral-mean subtraction 

across each single-word utterance to help make the features 

more robust to classroom noise.  We used the Hidden Markov 

Model Toolkit (HTK) [44] for all MFCC feature extraction, 

acoustic model training, and decoding.   

III. HUMAN EVALUATIONS 

A. Evaluation 1: High-level Literacy Assessment 

Evaluation 1 was administered to obtain human perceptual 

judgments of high-level literacy assessments for the 42 

children in the test data.  Eleven English-speaking volunteers 

rated the children on their “overall reading ability.”  The 

evaluators fit into four classes: three had worked on children’s 

literacy research for over a year, three were linguists, four 

were non-native speakers of American English with an 
engineering background in speech-related research, and three 

were native English-speaking individuals with no linguistics 

background or experience with speech or literacy research; the 

evaluators belonged to only one of the four classes, except for 

one linguist who also worked with children’s speech and a 

different linguist who was a non-native speaker.  While none 

of the evaluators were licensed teachers or reading experts, we 

found in previous work that the inter-evaluator agreement 

between teachers and non-experts was not significantly 

different for a pronunciation verification task [45].  Analysis 

of the inter-evaluator agreement for the 11 evaluators in this 

paper will be provided in Sec. V.   
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The order of the children was randomized for each 

evaluator, but the word order within each child’s session was 

maintained.  The evaluators were provided the word list, so 

they could follow the children’s progress.  A short beeping 

sound was inserted between each single-word utterance, so the 

evaluators knew when the transitions between words took 
place.  After listening to the speech from a child, evaluators 

rated her/his overall reading performance on an integer scale 

from 1 (“poor”) to 7 (“excellent”).  Examples of a “poor” 

reader versus an “excellent” reader were not provided to the 

evaluators beforehand for two reasons: 1) we did not know in 

advance whether all evaluators would agree on what a “poor” 

versus an “excellent” reader was, and 2) we wanted evaluators 

to come up with their own grading criteria for this reading 

task.  Since evaluators likely needed to listen to a few children 

before getting comfortable with their own grading scheme, 

they were permitted to change previously assigned scores.   

After the evaluators rated the 42 children, we asked one 
open-ended question to find which criteria evaluators used 

when grading the children.  This was done to get a rough 

estimate of the relative importance of various cues people used 

for this assessment task.  The evaluators’ responses were 

grouped into three categories: pronunciation correctness 

(stated by 10 out of the 11 evaluators), fluency (stated by 9 of 

11 evaluators), and speaking rate (stated by 9 of 11 

evaluators).  It should be noted that none of the evaluators 

specified that they based their judgment on the child’s relative 

performance at the beginning or end of the word list or on the 

number of words spoken by the child.  The number of spoken 
words was somewhat artificial for this data, since a human 

evaluator will not be present to stop the session if the task 

were administered by a computer; therefore, we do not use the 

number of words the child spoke as a feature for automatic 

high-level literacy assessment.  While word order and word 

difficulty most likely had some effect on human evaluators, 

we assumed each word was equally important in this paper.  

Coming up with a quantitative system that takes into account a 

word’s importance based on its location in the word list is 

difficult because these effects are most likely evaluator-

dependent.  The fact that children read a variable number of 

words from the word list further complicates the matter.  
Future work could use machine learning algorithms that take 

into account word list effects by weighting words differently, 

as was done in our previous work [12].   

Based on the evaluators’ responses, we concentrated on 

automatically extracting features/scores from the audio signal 

that correlated with pronunciation correctness, fluency, and 

speaking rate.  There has been a significant amount of research 

on automatic pronunciation verification (accepting or rejecting 

the pronunciation of a target word), and we will employ some 

of these techniques on the development set in Sec. IV-C.  

Speaking rate features and other temporal correlates are also 
straight-forward to extract if the word pronunciations can be 

correctly endpointed.  However, quantifying fluency is more 

difficult, since we did not know what made a response 

“fluent.”  We used a second human evaluation to discover this.   

B. Evaluation 2: Perceptual Impact of Disfluencies 

Evaluation 2 explored the impact of fluency on people’s 
perception.  We noted five main “disfluencies” in the data: 

hesitations, sound-outs, elongations of phones, whispering, 

and speaking with a questioning intonation (perhaps 

expressing uncertainty).  Here, we use the term “disfluency” to 

describe any speech phenomena that takes away from the 

natural flow of the pronunciation of the target word.  

Typically, the term disfluency is used in the context of 
spontaneous speech for events like fillers (e.g., “uh”), 

repetitions, repairs, and false starts [46].  However, since this 

is a reading task and the children are learning how to read (and 

some are still learning how to speak English as a second 

language), the types of disfluencies are different from those 

studied in adult spontaneous speech.   

We prescribed a set of conditions necessary for each 

disfluency type to make the task of labeling disfluencies more 

objective.  The types of disfluencies that occurred in the data 

before the target word pronunciation included hesitations, 

where the child started to pronounce the target word, paused, 

and then said the target word, and sound-outs, where the child 
pronounced each phone in the word, pausing between each 

one, and then pronounced the target word.  Some children 

whispered when sounding-out and hesitating, speaking voiced 

phones in an unvoiced manner.  The other two types of 

disfluencies we noted took place during the pronunciation of 

the target word.  Some children lengthened a phone or syllable 

of the target word, which we call elongations.  Lastly, some 

children’s pitch rose at the end of a word’s pronunciation, 

which we refer to as a question intonation.  It should be noted 

that these disfluency types were not mutually exclusive within 

an utterance.  For example, a child might hesitate at first, and 
then say the word with a question intonation, or a child might 

use a whispered voice while sounding out the word.   

For this evaluation, we selected 13 children’s speech from 

the test set which displayed varying levels of the five 

disfluency types.  Since labeling disfluencies is partially 

subjective, we had two evaluators (the first and second 

authors) mark each utterance with the presence/absence of 

each disfluency type. Table I shows that the percent agreement 

between the evaluators was high, so we used Evaluator 1’s 

labels as the ground-truth for the remainder of our analysis.   

 

Disfluency 
Frequency Counts (out of 146) 

% 

Agreement 
Evaluator 1 

(first author) 

Evaluator 2 

(second author) 

Sound-out 39 38 97.95 

Hesitation 27 29 97.26 

Whisper 22 26 97.26 

Elongation 13 22 93.84 

Question 10 14 95.89 
 

Table I. The number of utterances (out of 146) that each evaluator 
labeled as containing each of the five disfluency types and the 
percentage of utterances in which the two evaluators agreed.   

  

We then had 16 evaluators (eight engineers with speech-

related background, four with teaching experience, and four 

with a linguistics education) rate for each word utterance the 

fluency of the speech (on an integer scale from 1 to 5).  The 

words were grouped by child, so evaluators could adjust to the 

speaking style of the children.  The resulting fluency scores 

from the multiple evaluators were transformed to z-scores by 

subtracting the mean of each evaluator’s scores and dividing 

by the standard deviation.  This normalization was done to 
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allow for more meaningful comparisons of scores between 

evaluators.  We found that the mean normalized fluency score 

for utterances that contained no disfluencies (M = 0.637, SD = 

0.792) was significantly higher than the mean score for 

utterances that contained at least one disfluency type (M =       

-0.484, SD = 0.854), t(2035) = 30.3, p < .001.  This shows that 
indeed utterances which were not labeled with any of the five 

disfluency types were considered more fluent.  We also 

computed pairwise one-sided t-tests to compare the mean 

normalized fluency scores between disfluency types.  Table II 

shows that the sound-out and hesitation disfluencies were 

considered the most disfluent, and utterances with whispers 

were considered more disfluent than ones with question 

intonations or elongations.    

 

Disfluency M SD 
p-value 

Hes Wh Qu El 

Sound-out -0.648 0.865 0.154 0.001 < .001 < .001 

Hesitation -0.587 0.804 --  0.015 < .001 < .001 

Whisper -0.397 0.946 -- -- 0.011 0.012 

Question -0.210 0.714 -- -- -- 0.271 

Elongation -0.164 0.672 -- -- -- -- 
 

Table II. Statistics of the normalized fluency scores for each of the 
five disfluency types, along with the resulting p-values when using 
pairwise one-sided t-tests to compare the difference in mean scores. 

 

To discover the relative contribution of each disfluency type 

on the perception of fluency, we also ran a regression analysis.  

The dependent variable was the vector of normalized fluency 

scores, and the independent variables were the binary ground-

truth labels of the five disfluency types for each utterance.  We 

found these independent variables were able to account for a 

significant portion of the variance in the fluency scores, R2 = 

.331, F(5, 2031) = 201.0, p < .001.  As shown in Table III, the 
coefficient magnitudes for the sound-out, hesitation, and 

whisper disfluencies were largest, which suggests their 

presence impacts evaluators’ perception of fluency more than 

the elongation and question intonation disfluencies.    

We conjecture that whispers, hesitations, and sound-outs 

were considered more disfluent because they occurred in 

addition to the pronunciation of the target word, thus breaking 

up the flow of the speech more than disfluencies that occurred 

during the pronunciation of the target word.  Based on these 

results, we set out to automatically detect these three 

perceptually relevant disfluencies directly from the audio 
signal.  Sec. IV-D discusses our proposed methods and shows 

results based on experiments with the development set.   

 
Disfluency Coefficient Std. Error t(2031) p-value 
Sound-out -1.206 0.045 -26.68 < .001 

Hesitation -1.047 0.052 -19.99 < .001 

Whisper -0.718 0.078 -9.224 < .001 

Elongation -0.500 0.072 -6.930 < .001 

Question 0.150 0.057 2.645 0.008 
 

Table III. Regression analysis of the five disfluency independent 
variables when estimating the evaluators’ normalized fluency scores.   

IV. FEATURE EXTRACTION 

We learned in Evaluation 1 (Sec. III-A) that people 

considered pronunciation correctness, fluency, and speaking 

rate to be critical cues in determining the child’s overall 

reading ability.  In Evaluation 2 (Sec. III-B), we learned that 

the whispering, hesitation, and sound-out disfluencies were 

considered the most perceptually relevant.  In this section, we 

concentrated on extracting features correlated with these cues.  

In Sec. IV-A, we describe the construction of a dictionary for 

each target word, which we will use for much of our 
subsequent analyses.  In Sec. IV-B, we describe the 

development set in greater detail.  In Sec. IV-C and IV-D, we 

use this development set to experiment with automatic 

pronunciation verification and disfluency detection methods, 

respectively.  In Sec. IV-E, we apply these methods to the test 

data to extract features for high-level literacy assessment.  

A. Dictionary 

For each target word, we constructed a dictionary with the 

help of an expert teacher and linguist.  Acceptable and 

foreseeable unacceptable phonemic pronunciations were 

included in each target word’s dictionary.  These unacceptable 

pronunciations were made by substituting correct 

pronunciations with common letter-to-sound errors; for 

example, /k ah t/ (“cut”) was augmented to the dictionary as a 

common reading mistake for /k y uw t/ (“cute”).  Also, due to 

the large Mexican-American background in the corpus, we 

added common Spanish-speaking influenced variants to the 
dictionary, based on [47].  On average, each target word had 

1.20 acceptable pronunciations and 3.03 foreseeable 

unacceptable pronunciations in its dictionary. Across all target 

words, 33 phonemes were used in these pronunciations.  (We 

trained a monophone HMM for each, as described in Sec. II).  

B. Feature Development Set 

To test various feature extraction methods, we used the 

development set, introduced in Sec. II; this speech data was 

not included in either the test set or the acoustic model training 

data.  Most of the demographic information about the 220 

children was unknown, since the children’s parents did not 

provide this optional information: gender (female=25, 

male=43, unknown=152), grade (kindergarten=5, first=36, 

second=27, unknown=152), and native language (English=21, 

Spanish=38, bilingual=5, unknown=156).   

Since we were interested in detecting mispronunciations 

and disfluencies as relevant features, we first needed to 

explicitly label these in the development set.  Three evaluators 
manually verified the pronunciation of each target word in the 

development set (binary accept/reject) and labeled each single-

word utterance with the five disfluency types.  All utterances 

in which there was excessive background noise or problems 

during the recording (e.g., cut-off speech) were marked by the 

evaluators and ignored.  There was no overlap in evaluations, 

since this manual labeling process is costly (we saved 

approximately 20 hours of time by using three evaluators with 

no overlap)1.  In total, 2800 single-word utterances were 

annotated.  22.95% of the utterances had at least one 

disfluency type, and 2.49% had two or more types.  
Hesitations were marked in 8.93% of the utterances, sound-

outs in 5.94%, elongations in 5.15%, whispering in 3.13%, 

and question intonations in 2.13%.  37.1% of the target word 

 
1
 We found with a subset of 13 children’s speech that evaluators agreed 

with one another an average of 93% of the time when verifying the 

correctness of a word’s pronunciation [26].   
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pronunciations were rejected.  If at least one disfluency was 

marked in the utterance, the probability the pronunciation was 

rejected increased to 0.578.  This means that disfluent speech 

and mispronunciations were positively correlated events.     

C. Automatic Pronunciation Verification 

The purpose of automatic pronunciation verification is to 

accept or reject a pronunciation.  To characterize the 

performance of this task, we borrow metrics commonly used 

in detection theory and binary classification tasks: precision 

(1), recall (2), balanced F-score (3), false-alarm rate (4), 

misdetection rate (5), and Matthews correlation coefficient (6).  

In these equations, a true positive (TP) is correctly detecting a 
mispronunciation, a false positive (FP) is incorrectly detecting 

a mispronunciation, a true negative (TN) is correctly detecting 

no mispronunciation, and a false negative (FN) is incorrectly 

detecting no mispronunciation.   

 

� �  TP
TP � FP                                      �1
 

 

� �  TP
TP � FN                                      �2
 

 

� �   2 · � · �
� � �                                       �3
 

 

�� �  FP
TN � FP                                      �4
 

 

�� �  FN
TP � FN                                      �5
 

 

��� �  TP · TN � FP · FN 
��TP�FP
�TP�FN
�TN�FP
�TN�FN
      �6
 

 

In our previous papers [26]-[27], we used a simple automatic 

pronunciation verification method, which acts as our baseline 

method for this work.  We ran automatic speech recognition 
(ASR) with the dictionary of acceptable and foreseeable 

unacceptable pronunciations on each single-word utterance in 

the development set.  We tried a number of different finite-

state grammars (FSGs) to endpoint the pronunciation 

automatically: allowing for recognition of the background 

model (BG) vs. the garbage model (GG) at the start and end of 

the utterance vs. allowing both to be recognized; requiring the 

BG or GG models to be recognized at the start and end of the 

utterance vs. making it optional; allowing for repetitions of the 

BG and GG models at the start and end of the utterance vs. 

only allowing them to be recognized once.  We found, in 
general, that allowing for the GG model to be recognized at 

the start and end of the utterance resulted in more false 

alignments of the target word pronunciation, probably because 

the GG model was trained on speech data.  Fig. 1 shows an 

example of the FSG that attained the highest F-score.  In this 

FSG, the BG model is recognized (with the option of multiple 

recognitions) at the start and end of each utterance, and there 

is one required forced alignment of either the background 

model (BG), the garbage model (GG), or one of the acceptable 

or unacceptable pronunciations in the dictionary for that target 

word.  A pronunciation is accepted if and only if an acceptable 

pronunciation of the target word is recognized; otherwise, it is 

rejected.  The first row of Table IV shows the performance of 

this method (called LEX), with respect to the metrics (1)-(6).   

 

 
 

Fig. 1.  The finite-state grammar (FSG) used for the LEX 
pronunciation verification method (for the sample word, “fine”).  The 
pronunciation is accepted if and only if the correct pronunciation (/f 
ay n/) is recognized; otherwise, it is rejected.   

 

 The second automatic pronunciation verification method we 

tried was Goodness of Pronunciation (GOP) scoring [22].  In 

this method, a forced alignment of acceptable pronunciation(s) 

of the target word is first made to the utterance.  The resulting 

output will contain the phonemes recognized and their 

corresponding boundaries and acoustic log-probabilities.  An 

unconstrained phone loop is then decoded across each phone 
segment, and a final GOP score for each phone is computed 

by subtracting the acoustic log-probability of the phone loop 

from the log-probability of the forced-aligned phone.  High 

GOP scores correspond to phones that are more likely to be 

correctly pronounced, and a GOP score threshold can be made 

to reject phones with GOP scores below the threshold.   

We applied this technique to each utterance in the 

development set and got the best results, in terms of 

maximizing F-score, when we did not threshold on individual 

phones within a target word but rather thresholded on the 

average GOP score across the word (where each phone is 
counted equally).  Equation (7) shows how to compute the 

GOP phone score (O is the acoustics, p is the phone, PL is the 

phone-loop, and N is the number of frames of phone p).  

Equation (8) shows how to compute the GOP word-level 

score, by calculating the mean of the GOP phone scores for 

the word.  Finally, (9) shows how we thresholded the GOP 

word-level score to ultimately reject or accept the 

pronunciation.  This threshold, T, can be chosen to attain 

specific performance characteristics; in this paper, we chose 

the T that maximized F-score, but other popular optimization 

criteria could be used (e.g., equal precision and recall, equal 

false-alarm and misdetection rates, maximum Matthews 
correlation coefficient).   Table IV shows the performance of 

this GOP scoring method for this optimal value of T.   
 

GOP��
 � �
�log ��"|�


��"|�$
                         �7
 

 

GOP�&
 � �
|'()| * GOP��


'()
                    �8
 

 

       Reject�&
 � 1 1,   GOP�&
 3 4
 0,   GOP�&
 6 47                  �9
 

 

We also tried combining the LEX and GOP methods.  The 

LEX method makes use of target word knowledge and 
common letter-to-sound mistakes a child might make 

BG /f ay n/

/f ih n/
Start

BG
End

GG

BGBG = background

GG = garbage
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(especially with the influences of Spanish), but this method 

may be unable to detect errors if the child produces an 

unforeseeable realization of the target word.  On the other 

hand, the GOP method is able to detect errors made that were 

not foreseeable but might not be able to tease apart close 

pronunciations with one phone substitution.  We combined the 
two methods by first running the LEX method and then using 

the GOP scoring method only on pronunciations that were 

accepted by the LEX method.  Table IV shows results for all 

three proposed pronunciation verification methods, and Figs. 2 

and 3 show performance as a function of GOP score threshold.  

We attained the highest F-score (0.802) and Matthews 

correlation coefficient (0.680) by using the combined LEX + 

GOP scoring method.   
 

 
 

Fig. 2. Performance of LEX+GOP pronunciation verification method 
as a function of the GOP score threshold (all pronunciations with 
GOP scores lower than this threshold were rejected).     
 

 

 
 

Fig. 3. Performance of the three proposed pronunciation verification 
methods (LEX, GOP, LEX+GOP).  The GOP method performances 
are shown as the GOP score threshold is varied from -10 to 0.  EER is 

the equal error rate for the displayed metrics.   

System Type R P F MD FA MCC 
LEX 0.702 0.826 0.759 0.298 0.087 0.639 

GOP
*
 0.785 0.785 0.785 0.216 0.127 0.657 

LEX+GOP
*
 0.832 0.775 0.802 0.168 0.143 0.680 

 

*  GOP score threshold chosen to maximize F-score 
 

Table IV.  Performance of the pronunciation verification methods: 
LEX, GOP, and the combination LEX+GOP, in terms of (1)-(6).  The 
LEX+GOP method attained the highest F-score and MCC.   

D. Automatic Disfluency Detection 

Since this is a reading assessment task, the target words are 

known ahead of time. Furthermore, the sounding-out, 

hesitation, and whispering disfluencies were partial word 

manifestations of some pronunciation variant of the current 

target word.  This facilitated the use of automatic speech 

recognition using finite-state grammars (FSGs) to detect 

disfluent speech. We first developed two simple baseline 

FSGs.  The first baseline (Base1) allowed for repetitions of the 

target word with optional silence decoded in between.  If two 

or more target words were recognized, the utterance was 

deemed disfluent; otherwise, it was deemed fluent.  This 
baseline was chosen since the disfluencies usually consisted of 

phonemes that were present in the target word.  The second 

baseline (Base2) inserted a phone loop (again with optional 

silence decoded between phones) prior to a required forced 

alignment of the target word.  If one or more phones were 

recognized, the utterance was deemed disfluent; otherwise, it 

was deemed fluent.  This second baseline was chosen since 

oftentimes the full target word was not spoken during a 

disfluency, so a phone loop allowed for partial words to be 

recognized.  Table V shows the performance of these two 

baselines, in terms of the same six metrics we used before (1)-
(6).  Here, a “true positive” is the correct detection of a 

disfluency.  As shown in Table V, Base1 suffered from low 

recall (high misdetection rate), since the grammar was unable 

to recognize partial words, while Base2 suffered from low 

precision (high false-alarm rate), since its unconstrained phone 

loop resulted in a high number of false alarms.   

To improve upon these baselines, we created a two-stage 

procedure for detecting disfluencies that combined both 

baselines, allowing for partial words to be recognized using 

only phones present in the target word.  In the first stage, we 

designed a disfluency-specialized FSG to ensure a low 
misdetection rate (high recall).  In the second stage, we 

rejected some of these detections to reduce the false-alarm 

rate.  The first stage in the disfluency detection was introduced 

in [25] and based on work in [48]-[50].  We created target-

word specific FSGs to recognize partial words.  Since most 

disfluencies were partial word manifestations of the target 

word (or a partial word manifestation of a common 

mispronunciation of the target word), we created constrained 

FSGs that only allowed phones in the target word to be 

recognized and only in the order they appear in the dictionary.  

We experimented with many FSG designs: an unconstrained 

phone-loop consisting only of phones within the target word 
pronunciation(s) vs. requiring phones to be recognized in the 

order they appear in the target word pronunciation(s); 

allowing for repetitions and skipping of phones; requiring the 

first phone to be recognized vs. allowing it to be skipped; and 

allowing for optional repetitions of the BG model to be 
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recognized between phones.  All the FSG designs had high 

recall statistics above 0.94, so we chose to use the FSG shown 

in Fig. 4, since it had the highest precision statistic (Table V).  

Analyzing the errors made in stage 1, we noticed that many 

of the false-alarms were due to the recognition of unvoiced 

phones like stops (/k/, /p/) and fricatives (/f/, /s/).  These 
“noise-like” phones were similar to the classroom noise, and 

therefore, more susceptible to false alarms than vowels and 

other voiced phones.  We tried a number of methods to reject 

some of these false alarms while still maintaining a low 

misdetection rate: 1) rejecting utterances below a minimum 

number of partial words recognized, 2) rejecting partial words 

that were below a minimum length in time, 3) rejecting partial 

words that were below a minimum acoustic model log-

likelihood, 4) rejecting partial words that were below a 

minimum GOP phone-level score (7).  We got the best results, 

in terms of maximizing F-score, by rejecting recognized 

partial words that were shorter than a minimum time 
threshold.  Figs. 5 and 6 show how these performance metrics 

vary as a function of the threshold, and Table V shows the 

performance of the proposed two-stage disfluency detector 

when using the threshold that maximized F-score.   

Compared with the two baseline methods, we attained the 

highest F-score (0.783) and Matthews correlation coefficient 

(0.737) with this two-stage FSG method.  Further examining 

the performance of the two-stage FSG method when choosing 

the threshold that maximizes the F-score, 94.35% of the 

hesitations and 93.94% of the sound-outs were successfully 

detected.  It most likely was unable to detect as many 
instances of whispering (58.62%) because of acoustic 

mismatches with the non-disfluent speech we used to train the 

acoustic models.  In addition, whispered speech is more likely 

to be dominated by background noise. 

  
System Type R P F MD FA MCC 

Base1: Word Reps 0.175 0.965 0.297 0.825 0.001 0.376 

Base2: Phone Loop 0.989 0.273 0.428 0.011 0.568 0.336 

FSG: Stage 1 0.942 0.611 0.741 0.058 0.129 0.697 

FSG: Stage 2
*
 0.885 0.702 0.783 0.115 0.081 0.737 

 

*  Stage 2 threshold of 0.125 s chosen to maximize F-score 
 

Table V. Performance of the multiple disfluency detection methods: 
baseline 1 (Base1), baseline 2 (Base2), and the 2 stages of the target 
word-specific finite-state grammar (FSG) procedure.  The proposed 
2-stage FSG method achieved the highest F-score and MCC.  

 

 
 

Fig. 4. The stage 1 disfluency detection finite-state grammar (FSG) 
for the sample word, “fine,” which has two entries in the dictionary 
(/f ay n/, /f ih n/).  The FSG allows partial word manifestations of the 
target word to be recognized before a required forced-alignment of 
the entire target word.  (BG is the background acoustic model.)   
    

   
 

Fig. 5. The performance of the stage 2 finite-state grammar (FSG) 
method as a function of the partial word length threshold (below 

which all partial words were rejected).     

 

 

 
 

Fig. 6. Performance of the two baseline systems (Base1 and Base2) 
and target word-specific finite-state grammar (FSG) procedure 
(stages 1 and 2).  The FSG stage 2 performance is shown as the 
minimum partial word length threshold is varied from 0 to 2 seconds.  
EER is the equal error rate for the displayed metrics.   

E. Feature Extraction on the Test Data 

We next applied these pronunciation verification and 

disfluency detection methods on the test data to extract scores 

correlated with evaluators’ perception of the children’s 

reading ability.  Since this was an isolated word-reading task, 

we extracted all features at the word-level.  Table VI shows 
the 48 scores extracted for each word.  There are 10 scores 

based on the pronunciation verification methods, 12 scores 

based on the disfluency detection methods, and 26 speaking 

rate and other temporal scores based on both methods.  When 

applying the pronunciation verification and disfluency 

detection methods discussed in Sec. IV-C and IV-D, we used 

all threshold and parameter values that maximized the F-score 
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on the development set.  Note that we extracted the square 

root of all temporal features as an additional feature.  This was 

done since the temporal features oftentimes had distributions 

that were skewed because of a small percentage of long times.  

The square root helped push the distributions towards a more 

bell-shaped distribution, which better fit the distributions 
assumed in the linear models we applied in Sec. V.  We found 

this square root transformation performed empirically well in 

our previous work [27]; future work could find a more optimal 

transform by choosing the root that makes the distribution 

most “normal.”   

We extracted our final set of features for each child by 

computing 12 statistics across each word-level score for all the 

words spoken by the child: mean, standard deviation, 

skewness, minimum, minimum location (normalized by 

number of words spoken by child), maximum, maximum 

location (normalized), range, lower quartile, median, upper 

quartile, interquartile range.  This produced our final feature 
set of 576 features per child.  The next section will discuss 

how we used feature selection and supervised learning 

algorithms to properly deal with this over-generation of 

potentially useful features.   

V. PREDICTION OF CHILDREN’S READING ABILITY 

Sec. IV explained our feature extraction, which resulted in 

576 child-level features.  In this section, we used this feature 
set to predict children’s reading ability, as rated by the 11 

evaluators (see Sec. III-A).  Since there were 11 evaluators, 

there were many ways to pose this learning problem.  We first 

analyzed the inter-evaluator agreement of the evaluators using 

Pearson’s correlation coefficient.  Equation (10) is Pearson’s 

correlation between two vectors of scores, 9� and 9:, where 

9; < =9;� … 9;?:@A
, and BCD is the mean score for 9;.  Note 

that the “42” in this equation refers to the total number of 

children we are assessing.     

 

�EFF�9�, 9:
 � ∑ H9�I � BCJKH9:I � BCLK?:IM�
N∑ H9�I � BCJK:?:IM� ∑ H9:I � BCLK:?:IM�

         �10
 

 

Table VII shows the pairwise inter-evaluator agreement 

using (10) and also displays four sets of average agreement for 

each evaluator.  All 11 evaluators’ scores had higher 

correlations with ground-truth scores (computed by averaging 

the other evaluators’ scores), as compared to the mean 

pairwise correlation with the other evaluators.  This means 

that the ground-truth scores are representative of the “average” 

evaluators’ perception.  In addition, for 9 of the 11 evaluators, 
agreement was higher when using all evaluators to compute 

ground-truth scores, as compared to using just evaluators 

within the evaluators’ background(s).  While Table VII shows 

that the “experts” had higher average correlations, none of the 

correlation coefficients were significantly different (all p > 

0.1), using a difference in correlation coefficients test that 

transformed the coefficients with the Fisher Z-transform.  As a 

result, we considered all evaluators in this paper.   

 

 

Name Description Domain 
VER1

^
 Was unacceptable pronunciation recognized? {0, 1} 

VER2
^
 Was common reading error recognized? {0, 1} 

VER3
^
 Was Spanish-related error recognized? {0, 1} 

VER4
^
 Was garbage (GG) recognized? {0, 1} 

VER5
^
 Was background/silence (BG) recognized? {0, 1} 

VER6* Log-likelihood of acceptable pronunciation (-∞, 0] 

VER7 GOP(w) – see (7) (-∞, 0] 

VER8 Reject(w) – see (8) {0, 1} 

VER9
^
* 2-stage verification method – see Sec. IV-C {0, 1} 

VER10 VER1 + VER8 {0, 1, 2} 

FL1
#
 Number of recognized partial words {0, 1, …} 

FL2
#
 Was at least one partial word recognized? {0, 1} 

FL3
#
 Length of recognized partial words [s] [0, 5) 

FL4
#
 Length of silence between partial words [s] [0, 5) 

FL5
#
 Length of all silence recognized [s] [0, 5) 

FL6 FL3 + FL4 [0, 5) 

FL7 FL3 + FL5 [0, 5) 

FL8 : FL12 Square root of FL3 through FL7 [0, 5
1/2

) 

SR1 Utterance length [s] (0, 5] 

SR2
^
 Target word start time [s] [0, 5) 

SR3
^
 Target word end time [s] (0, 5] 

SR4
^
 Number of syllables spoken / (SR3 – SR2) (0, ∞) 

SR5
^
 (SR3 - SR2) / Number of syllables spoken (0, 5] 

SR6
^
 Number of phones spoken / (SR3 – SR2) (0, ∞) 

SR7
^
 (SR3 - SR2) / Number of phones spoken (0, 5] 

SR8
#
 Speech start time (partial word or target word) [0, 5) 

SR9
#
 Speech end time (0, 5] 

SR10
#
 Number of syllables spoken / (SR9 – SR8) (0, ∞) 

SR11
#
 (SR9 – SR8) / Number of syllables spoken (0, 5] 

SR12
#
 Number of phones spoken / (SR9 – SR8) (0, ∞) 

SR13
#
 (SR9 – SR8) / Number of phones spoken (0, 5] 

SR14 : SR26 Square root of SR1 through SR13 -- 
 

^  using a finite-state grammar as depicted in Fig. 1 

*  using forced alignment of acceptable pronunciations of target word 

#  using a finite-state grammar as depicted in Fig. 4 
 

Table VI. Features extracted for each word in the test data (VER = 
verification, FL = fluency, SR = speaking rate).  The temporal 
features have an upper bound of 5 seconds since this was the 
maximum time allotted per word.  All GOP scores in this study were 

finite, since all phone probabilities were non-zero.   

 

We chose three different learning problems, meant to show 
how well the system could do in three typical scenarios.  In all 

scenarios, we trained and tested the system using leave-one-

child-out cross-validation, i.e., trained the system on 41 

children and tested it on the held-out child, and repeated this                   

process for all 42 children.  In the first scenario, we trained the 

system on an individual evaluator’s scores and tested on the 

same evaluator’s held-out score.  Scenario 1 is a test for how 

well the system can predict a single evaluator’s scores if 

trained on that evaluator.  In scenario two, we predicted 

individual evaluator’s scores using ground-truth scores to train 

the system.  In this scenario, we computed a ground-truth 

score for each child by taking the mean score across the 10 
held-out evaluators.  Scenario 2 is a test for how well the 

system can predict single evaluator’s scores if trained on a 

bank of held-out evaluators; scenario 2 is analogous to testing 

how much an evaluator agrees with “off-the-shelf” assessment 

tools trained on a group of different evaluators.  In the third 

scenario (and the only one we did in our previous work [26]-

[27]), we predicted ground-truth scores using these ground-

truth scores to train the system.  Therefore, scenario 3 is a test 

for how well the system can predict a bank of evaluators if 

that same bank of evaluators trains the system.   
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Evaluator 

(Background) 
Pairwise Evaluator Correlation 

Avg. Correlations 

mean ground-truth 

1 2 3 4 5 6 7 8 9 10 intra all intra all 

1 (Naïve)           0.776 0.770 0.810 0.833 

2 (Naïve) 0.70          0.767 0.803 0.808 0.874 

3 (Naïve) 0.85 0.83         0.843 0.860 0.909 0.940 

4 (Non-native) 0.72 0.70 0.84        0.813 0.780 0.850 0.844 

5 (Non-native) 0.76 0.85 0.86 0.84       0.857 0.848 0.913 0.928 

6 (Non-native) 0.82 0.84 0.89 0.86 0.91      0.880 0.868 0.944 0.949 

7 (Non-nat., Ling.) 0.82 0.79 0.88 0.74 0.82 0.87     0.810 0.816 0.866 0.886 

8 (Linguist) 0.69 0.86 0.84 0.73 0.87 0.86 0.73    0.777 0.814 0.801 0.888 

9 (Linguist, Expert) 0.79 0.82 0.88 0.76 0.83 0.83 0.88 0.83   0.860 0.840 0.923 0.916 

10 (Expert) 0.77 0.80 0.86 0.79 0.86 0.86 0.81 0.87 0.86  0.857 0.837 0.886 0.913 

11 (Expert) 0.78 0.84 0.87 0.82 0.88 0.88 0.82 0.86 0.87 0.86 0.863 0.844 0.895 0.922 

Avg:  0.828 0.827 0.873 0.899 
 

Table VII. Pairwise evaluator correlations between the 11 evaluators (Naïve = native English speakers with no background in linguistics or 
children’s literacy, Non-Native = non-native English speakers with an engineering background in speech-related research, Linguist = taken at 
least two graduate-level linguistics courses, Experts = more than a year working on children’s literacy research).  Average correlations were 

computed two different ways (“mean” and “ground-truth”) and across two different groupings of evaluators (“intra” and “all”).  “Mean” is the 
average pairwise evaluator correlation, and “ground-truth” is the correlation between an evaluator’s scores and the averaged scores of the other 
evaluators.  “Intra” calculations compare evaluators with the same background(s), while “all” calculations compare all evaluators’ scores.     
 

To validate our results, we chose three metrics.  Pearson’s 

correlation coefficient (10) is the primary metric.  Equation 

(11) is the mean absolute error between vectors of scores, 9� 

and 9:.  Equation (12) is the maximum absolute error between 

the two vectors of scores, 9� and 9:.   
 

OPQRS�9�, 9:
 � �
?: * T9�I � 9:I T?:

IM�
         �11
 

 

OPRU�9�, 9:
 � max �|9�� � 9:�|, … , |9�?: � 9:?:|
         �12
 

 

Before running experiments, we calculated human agreement 

statistics for all three metrics.  Table VIII shows the human 

agreement statistics between the 11 evaluators, calculated in 
two ways: 1) using pairwise comparisons between individual 

evaluators and 2) comparing individual evaluators to the 

ground-truth scores of the other 10 evaluators.  The pairwise 

comparisons had lower agreement than the ground-truth 

comparisons for all three metrics (lower correlation, higher 

mean absolute error, and higher maximum absolute error).   
 

Evaluator 

Domain 

Mean (Standard Deviation) 

Corr Emean Emax 
Pairwise 0.827 (0.032) 0.810 (0.180) 2.800 (0.701) 

Ground-Truth 0.899 (0.038) 0.624 (0.137) 2.227 (0.388) 
 

Table VIII: Human agreement statistics for the 3 metrics (10)-(12).   

 

For all three scenarios, we chose to use linear regression 

techniques because of their simplicity and interpretability.  

The choice of function estimation methods made particular 

sense for scenarios 2 and 3, where the trained dependent 

variable was quasi-continuous.  We also chose to use 

regression techniques for scenario 1, even though the 

dependent variable is ordinal, in order to ensure the results 

across the three scenarios are comparable.  We did not z-

normalize the dependent variable in any of the three scenarios 

since it had no impact on performance and since knowledge of 
the mean and standard deviation of the evaluator’s scores in a 

real-life scenario is not always practical to attain.    

For all experiments, we used leave-one-child-out cross-

validation to separate train and test sets.  Optimal learning 

parameters and feature subsets (when applicable) were 

computed on each cross-validation train set separately by 

using leave-one-child-out cross-validation; we chose the 

parameter settings (feature subsets) that maximized correlation 
between the automatic predictions and the evaluators’ scores.  

This cross-validation approach effectively made use of all 

labeled data and simultaneously ensured that we were testing 

the true predictive power of our features/methods.   

We developed two baseline systems for this paper, based on 

token-level pronunciation assessment research, where 

pronunciation correctness is often solely considered.  Both 

baselines use simple linear regression with single features.  

The first uses the mean of feature VER1, and the second uses 

the mean of feature VER8 (Table VI). These two features 

represent the fraction of words mispronounced by the child, as 

determined by the LEX and GOP pronunciation verification 
methods, respectively (Sec. IV-C).  Therefore, the baseline 

methods test whether one-dimensional token-level assess-

ments can be extended to high-level assessments by simply 

computing an average over the token-level assessments.   

A logical extension to these baseline systems would be to 

use multiple linear regression with the full set of 576 child-

level features.  Equation (13) shows this linear model, where 9Y 

is the centered (mean subtracted) vector of human scores, Z is 

the matrix of child-level features, & is the vector of coefficient 

weights, and [ is a zero mean Gaussian random variable.  The 

objective function \ in this case is (14), and (15) is the 

analytical solution which minimizes \.   
 

9Y <  Z& � [                �13
 
 

\ < ]9Y � Z&]: � �9Y � Z&
A�9Y � Z&
                �14
 
 

& < �ZAZ
^�ZA9Y                 �15
 
 

Due to multicollinearity in the feature set, the solution to the 

inverse in (15) would be numerically unstable.  We addressed 

this problem by trying various feature selection methods that 
model the dependent variable as a linear combination of a 

sparse set of independent variables.  Choosing a subset of the 

features implicitly filters out redundant, irrelevant, and/or 
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noisy features and makes the model easier to interpret.  To 

show the relative merits of each feature, we ran simple linear 

regression (SLR) with each child-level feature individually.   

We next tried three feature selection methods within the 

linear regression framework: a forward selection method, 

stepwise linear regression, and the “lasso” (least absolute 
shrinkage and selection operator) [51].  Forward selection 

iteratively adds features that optimize Pearson’s correlation 

coefficient (10).  Stepwise regression is less greedy in that it 

can remove entered features if their coefficient’s p-values 

become too large.  The lasso algorithm finds a solution to the 

least-squares error minimization when adding a _-weighted L1 

regularization term to the objective function, as shown in (16).  

This penalizes solutions with large weight coefficients (which 

often occurs when features are correlated) and promotes 

sparse models.  Thus, many of the weight coefficients will be 

identically zero.  We implemented the lasso using the least 
angle regression (LARS) algorithm, since there is no 

analytical solution to the lasso objective function [52]-[53].  

Note that we must standardize the features to ensure the 

regularization term is applied equally to all features.  We 

accomplished this by centering the feature matrix Z and 

dividing by the standard deviation of each feature; this 

normalization is denoted in (16) as Z̀.   
  

\ < a9Y � Z̀&a: � _]&]                �16
 

VI. RESULTS & DISCUSSION 

Table IX shows the performance for the two 

aforementioned baseline methods, the performance of the best 

SLR features for each of the three feature types, and the 

performance for the three feature selection methods.  Table X 

provides coefficient statistics and lists which features were 

selected in at least 20% of the 42 cross-validations for the best 

performing feature selection method in each of the three 

train/test scenarios.  We see from these results that scenario 1 

(training and testing on individual scores) is the hardest, 

followed by scenario 2 (training on ground-truth scores and 

testing on a held-out evaluator), followed by scenario 3 

(training and testing on ground-truth scores).  We can explain 

the relative difficulty of the three scenarios using the 

following high-level description.  Individual evaluators’ scores 

can be viewed as “noisy,” due to the subjective nature of the 

assessment task.  Averaging the evaluators’ scores can be seen 

as a method to “de-noise” individual evaluators’ scores.  We 

get the best results in scenario 3, where we train and test on 

ground-truth (“de-noised”) scores and the worst results when 

we train and test on individual (“noisy”) evaluators’ scores.   

In Table X, we see that the baseline methods (that used the 

means of VER1 and VER8), did not use the best features, since 

the mean of VER10 proved to be a better predictor of the 

children’s overall reading ability in all three learning 

scenarios.  VER10 combines VER1 and VER8 into one trinary 

verification feature (Table VI).  When limited to one feature, 

this single verification feature achieved the best results in 

terms of all three metrics and for all three scenarios, compared 

with using a single fluency or speaking rate feature (Table IX). 

   

Scenario:Method 
Mean (Standard Deviation when applicable) 

Corr Emean Emax 
1: Base1 (VER1) 0.734 (0.062) 0.914 (0.106) 2.880 (0.358) 

1: Base2 (VER8) 0.746 (0.048) 0.930 (0.121) 2.682 (0.475) 

1: SLR (best VER) 0.769 (0.065) 0.882 (0.072) 2.610 (0.632) 

1: SLR (best FL) 0.748 (0.054) 0.895 (0.139) 3.041 (0.480) 

1: SLR (best SR) 0.705 (0.105) 0.924 (0.197) 3.385 (0.799) 

1: Forward LR 0.792 (0.074) 0.815 (0.160) 2.659 (0.700) 

1: Stepwise LR 0.805 (0.055) 0.786 (0.143) 2.852 (0.722) 

1: Lasso 0.807 (0.087) 0.814 (0.223) 2.467 (0.565) 

1: Lasso, then LR 0.828 (0.070) 0.721 (0.153) 2.549 (0.560) 

2: Base1 (VER1) 0.741 (0.053) 0.968 (0.111) 3.044 (0.376) 

2: Base2 (VER8) 0.756 (0.044) 0.970 (0.107) 2.763 (0.687) 

2: SLR (best VER) 0.812 (0.041) 0.856 (0.084) 2.510 (0.643) 

2: SLR (best FL) 0.731 (0.051) 0.979 (0.137) 3.345 (0.505) 

2: SLR (best SR) 0.724 (0.062) 0.975 (0.175) 3.374 (0.554) 

2: Forward LR 0.869 (0.038) 0.712 (0.138) 2.407 (0.520) 

2: Stepwise LR 0.861 (0.035) 0.730 (0.133) 2.589 (0.703) 

2: Lasso 0.851 (0.041) 0.846 (0.139) 2.544 (0.552) 

2: Lasso, then LR 0.854 (0.037) 0.753 (0.125) 2.526 (0.495) 

3: Base1 (VER1) 0.809 0.735 2.405 
3: Base2 (VER8) 0.822 0.743 1.909 

3: SLR (best VER) 0.888 0.596 1.601 
3: SLR (best FL) 0.799 0.759 2.762 
3: SLR (best SR) 0.783 0.789 2.858 

3: Forward LR 0.946 0.365 1.594 
3: Stepwise LR 0.946 0.365 1.594 
3: Lasso 0.925 0.535 1.837 

3: Lasso, then LR 0.940 0.414 1.636 
 

Table IX. Automatic performance for the three scenarios described in 
Sec. V.  The methods above the dotted line use single features, and 
the ones below use multiple features.  The numbers in red are the best 
performance achieved for the three scenarios.     

 

Scenario:Method Feature 
% folds 

selected 

Coefficient stats 

M SD 
1: Base1 (VER1) Mean(VER1) -- -0.755 0.051 

1: Base2 (VER8) Mean(VER8) -- -0.771 0.042 

1: SLR (best VER) Mean(VER10) -- -0.851 0.012 

1: SLR (best FL) Uquart(FL12) -- -0.801 0.036 

1: SLR (best SR) Uquart(SR14) -- -0.771 0.055 

1: Lasso, then LR 

Range(VER7) 50.9 0.140 0.129 

Mean(VER7) 44.4 0.258 0.267 

Iquart(SR2) 38.1 -0.314 0.203 

Uquart(FL12) 31.2 -0.142 0.116 

Mean(VER6) 27.9 0.199 0.149 

Lquart(FL2) 21.3 -0.276 0.147 

2: Base1 (VER1) Mean(VER1) -- -0.824 0.009 

2: Base2 (VER8) Mean(VER8) -- -0.839 0.007 

2: SLR (best VER) Mean(VER10) -- -0.898 0.005 

2: SLR (best FL) Uquart(FL12) -- -0.852 0.006 

2: SLR (best SR) Uquart(SR14) -- -0.829 0.009 

2: Forward LR 
Mean(VER10) 99.1 -0.604 0.017 

Uquart(FL12) 97.0 -0.442 0.019 

3: Base1 (VER1) Mean(VER1) -- -0.825 0.007 

3: Base2 (VER8) Mean(VER8) -- -0.840 0.006 

3: SLR (best VER) Mean(VER10) -- 0.899 0.004 

3: SLR (best FL) Uquart(FL12) -- -0.852 0.005 

3: SLR (best SR) Uquart(SR14) -- -0.829 0.006 

3: Forward LR 
Mean(VER10) 100.0 -0.605 0.012 

Uquart(FL12) 97.6 -0.442 0.013 
 

Table X. Statistics of the standardized coefficients for the baseline, 
single feature, and best performing feature selection methods.   
 

Table X shows that the best performing speaking rate 

feature was the upper quartile of SR14, which is simply the 

duration of the utterance.  The best fluency feature was the 

upper quartile of FL12, which is the square root of the total 

duration of silence and disfluencies.  FL12 can be viewed as a 
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hybrid fluency and speaking rate feature; it is a fluency feature 

since more disfluencies will increase its value, and it is a 

speaking rate feature since slower speaking rates (longer 

periods of silence between words) will also increase its value.  

Table X shows that the signs of the trained coefficients for 

these features (VER1, VER8, VER10, SR14, and FL12) were all 

negative, which means lower ratings of overall reading ability 

would be predicted for children with many mispronunciations, 

long periods of disfluent speech or silence, and longer 

(slower) responses.  These interpretations agree with intuition. 

Within each scenario, the automatic methods that used 

multiple features outperformed the single feature methods 

(including the two baselines) for all three metrics.  For 

scenario 1, we achieved the best results in terms of correlation 

(10) and mean absolute error (11) using the lasso regression as 

a pre-processing feature selection algorithm and then training 

the coefficient weights using multiple linear regression; we 
achieved the best results in terms of maximum absolute error 

(12) using the lasso method to select features and train the 

weights.  For scenario 2, we achieved the best results for all 

three metrics using forward feature selection.  For scenario 3, 

we got equally good results with both the forward selection 

and stepwise linear regression methods.  Forward linear 

regression most likely achieved the best results for Scenarios 2 

and 3 because the resulting feature set included only two 

features, so a greedy forward selection process was sufficient 

and outperformed more complicated feature selection 

methods.  On the other hand, for Scenario 1, the lasso 

algorithm provided a more robust objective function for the 
more difficult learning problem, and the average number of 

features selected at each cross-validation was much higher at 

5.6.  Thus, in this case, the forward selection algorithm was 

unable to robustly select this higher number of features.  The 

stepwise linear regression method can be viewed as the middle 

ground, which explains why its performance generally fell 

between that of the forward selection and the lasso.  Table X 

also shows that for scenarios 2 and 3, the forward selection 

algorithm chose the top performing verification and fluency 

features for almost all of the cross-validation folds.  However, 

for scenario 1, the lasso algorithm selected a variety of 
features, depending on the evaluator.   

Scenario 3 was the only one in which we achieved a 

significantly higher correlation coefficient, compared to the 

best baseline system (z = 2.78, p = .005).  Fig. 7 shows 

performance (in terms of correlation) of the different 

automatic feature selection methods for all three learning 

scenarios, compared to the human agreement statistics 

computed earlier.  For the human agreement in this plot, we 

show the pairwise inter-evaluator correlations in scenario 1, 

and the ground-truth correlations in scenarios 2 and 3.  We see 

from this plot that we were able to achieve a comparable level 
of human agreement for scenario 1 with the lasso and linear 

regression learning method.  The mean automatic performance 

correlation of 0.828 was actually higher than the average 

pairwise human evaluator correlation of 0.827, although this 

difference was not significant (z = 0.014, p = 0.989).  This 

means that the system trained on a particular evaluator will 

agree with that evaluator about as much as other evaluators 

will agree with that evaluator.  In scenario 2, the automatic 

performance improved, benefiting from being trained on the 

perceptions of multiple evaluators, but its average 

performance was less than human agreement in this scenario, 

since the scores being predicted were from a held-out 

evaluator (resulting in a mismatched train/test condition).  For 

scenario 2, the human evaluators’ scores were correlated with 
ground-truth scores with 0.899 correlation, which was not 

significantly higher than automatic correlation of 0.869 (z = 

0.609, p = 0.542).  In scenario 3, the automatic performance is 

greater than average human agreement, although not 

significantly (z = 1.44, p = 0.151).  In this scenario, the 

automatic system had the benefit of having multiple evaluators 

to train the system and also a matched test set composed of the 

same evaluators.   

 

 
Fig. 7. Mean and standard deviation of human evaluator agreement 

compared to the automatic performance for the three feature selection 
methods: forward selection, stepwise regression, and the lasso 
followed by linear regression. 

 

 

 
 

Fig. 8. Linear regression results when using features selected using 
forward selection for scenario 3.  “Human error” is the mean absolute 
difference from the ground-truth (GT) to held-out evaluators’ scores.   
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Fig. 8 shows the automatic predictions for the best 

automatic system in scenario 3.  The automatic predictions 

were inside the mean human errors for 34 out of 42 (81%) of 

the children.  We ran a final experiment by re-running 

scenario 3 using random subsets of evaluators (ranging from 2 

to 10 evaluators).  Fig. 9 shows these results when using the 
forward selection and lasso/linear regression methods.  Again, 

for this plot, we also show agreement between the human 

evaluators (comparing individual evaluators to the ground-

truth scores of the other selected evaluators).  We chose 10 

random subsets of evaluators for each value of the number of 

evaluators chosen.  We see from this plot that human 

agreement and automatic performance both improve as a 

function of the number of evaluators.  More importantly, we 

see that automatic performance is relatively high, even when 

using multiple evaluators with just two evaluators.  This 

shows that the system benefits from the joint modeling of 

evaluators with as few as two evaluators.   
 

 
 

Fig. 9. Correlation between predictions and evaluators’ scores for 
learning scenario 3 as a function of the number of evaluators used to 

compute the ground-truth scores. It shows that both human agreement 
and automatic performance increase as the number of evaluators 
increases.  Automatic performance with nine or more evaluators is 
significantly higher than with two evaluators (z = 1.94, p = 0.048).    
    

VII. CONCLUSION 

This paper addresses the need for automatic literacy 

assessments by predicting high-level ratings of children’s 

overall reading ability, based on their performance reading a 

list of words aloud.  We chose to use a modeling scheme that 

linearly combined a sparse set of features that spanned the 

ones actual human evaluators said they used (pronunciation 

correctness, fluency, and speaking rate).  The resulting multi-
dimensional models implicitly weight the importance of the 

selected features and offer a more interpretive assessment than 

the more common token-level assessments.  As part of this 

work, we developed methods to automatically detect 

mispronunciations and disfluencies on a development training 

set, using grammar-based automatic speech recognition.   

The automatic models performed best when trained on a 

bank of evaluators and when the train and test set were 

matched.  This type of automatic processing could be 

especially useful in a classroom environment, where the 

teacher or a number of teachers could train the system to 

mimic their grading trends.  High-level assessments could then 

be used by teachers to ensure the children are learning at an 

appropriate rate and to help inform their lessons.  This type of 

collaboration between technology and teachers could 
transform the classroom.  

In the future, we would like to incorporate both audio and 

video information for a more realistic scoring scenario.  We 

would also like to extend this high-level literacy assessment to 

other reading tasks.  We imagine applying it within a 

framework that examines children’s skills across various 

reading tasks, so as to provide teachers with analysis on areas 

in which a child might be excelling versus an area in which 

he/she may need more practice or instruction.   
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